
MULTI® 8
Integrated Development Environment

2

Tools that make embedded
software developers more productive
Used by thousands of developers for over three decades, the MULTI IDE is the industry’s unrivaled
integrated development environment used to create, debug, and optimize code for embedded
processors. With MULTI, developers can easily see and fix difficult bugs, pinpoint performance
bottlenecks, and prevent future problems. Key benefits are: lower cost to deliver on-time software,
avoidance of costly recalls due to poor software quality, and lower processor and memory costs
because more efficient code uses less memory and smaller CPUs.

	▲ Find and fix bugs faster	 s	 Increase code security and reliability
	▲ Replay programs to pinpoint problems	 s	 Maximize performance
	▲ Uncover bugs before run-time	 s	 Reduce processor cost
	▲ Spot and fix performance bottlenecks	 s	 Run Simulink® and other models
	▲ Analyze and optimize complex systems	 s	 Meet functional safety requirements

Find and fix bugs faster
In complex real-time systems, unexpected time spent on hunting for sporadic and deeply buried
bugs or finding performance bottlenecks can take weeks or even months, potentially risking an
on-time product launch.

With MULTI, problems that once took days, weeks, or months are found and fixed in hours or even
minutes. In complex systems, the most time-consuming bugs are sporadic, hidden and not
evident with code inspection. MULTI enables developers to quickly pinpoint problems caused
by memory corruption, unintended dependencies, unexpected interrupts, multicore complexity,
inter-task corruptions, opaqueness from missing source code or virtualization, missed real-time
requirements, and asynchronous hardware events … just to name a few.

Here are a few examples of reports from customers that highlight the effectiveness of the MULTI
Debugger and its ability to solve challenging problems that less capable tools cannot achieve:
	▲ Using MULTI, a customer found and fixed a bug in two hours after spending two person-
months searching for the bug

	▲ A customer reported that after using MULTI for only a couple minutes, they found a three-
month-old bug that was causing infrequent hangs on their target due to unexpected interrupts
in start-up code

The suite of tools in MULTI were created
by Green Hills Software developers to form
a complete environment specifically made
to fit the needs of embedded software
developers:

	▲ Safety-certified C/C++ compilers and
run-time libraries

	▲ Multicore debugger

	▲ Advanced system viewer

	▲ Back-in-time debugging

	▲ OS awareness

	▲ Static code analyzer

	▲ Run-time error detection

	▲ Memory leak detection

	▲ Performance profiler

	▲ Editor

	▲ Instruction set simulator

	▲ Code coverage

	▲ Project manager

	▲ Version control integration

	▲ Flash programmer

	▲ Python interface

	▲ MATLAB/Simulink integration

MULTI supports all popular processor architectures, runs on Linux or Windows desktops, debugs code
from multiple compilers, connects to targets over various links, and supports multiple operating systems

running on silicon, simulators, or emulators.

3

	▲ A customer had been unable to find the source of a sporadic audio pop in their automotive
audio system for six months. The deadline for production was looming and executives had
experienced this bug. Even with missing source code, the Green Hills system visualization tool,
History, easily displayed an unexpected execution flow that—after a few hours of analysis—
pointed to the root cause within a graphics application. Once the engineers knew the cause,
this issue was fixed in minutes

The MULTI Debugger includes three powerful capabilities:

	▲ History® viewer shows how the program got to its current state & what the system was doing

	▲ TimeMachine® uses trace data so you can run, step, & analyze back-in-time in the Debugger

	▲ Debug Snapshot saves a debugging session that you can easily share with coworkers
around the world

Make sense of complex systems
	▲ How did the program get here?
	▲ Where is time being spent?
	▲ Is the program doing anything unexpected?

These three questions are at the foundation of debugging code and making your system run
faster. The History viewer answers these questions.

History viewer displays the last few seconds, minutes or days of program execution across com-
plex heterogenous multicore systems with a natural and intuitive GUI. For the first time you now
have a clear, complete view into a murky hardware and software system. You can zoom deeply
into processor behavior at the micro-second level or zoom out to see system behavior spanning
minutes and days. This new kind of visibility empowers you to find difficult bugs in seconds, see
hidden bottlenecks and dependencies, and analyze execution times.

History viewer capabilities
	▲ Halt the MULTI Debugger and view the system’s history leading up to any moment in the
History viewer

	▲ Gain an instant understanding of the flow of your program with task call stacks. See how the
program got to this point and where the code diverted from an expected path

	▲ Clearly see the causes of bugs and bottlenecks across multiple cores, such as unexpected
execution flow, incorrect task priorities, excessive interrupt level processing, too many calls to
the operating system, and unusual interrupt latencies

	▲ Zoom in to inspect and measure micro-second OS events and dependencies and zoom out to
see system-level execution patterns

	▲ Click anywhere in the various History viewer panes and go to the corresponding line of source
code

	▲ Gain a new understanding of your complex program including kernel execution, virtual address
spaces, multicore CPU utilization, inter-component communications, exact timing, user-defined
events, and more

	▲ Ingest terabytes of trace data and/or instrumented code running on simulators and boards

	▲ Display third-party logging data as well, including Linux ftrace and COVESA DLT (Diagnostic
Log & Trace)

	▲ Inject an almost unlimited number of user-defined, low-overhead variables and view in History
viewer

	▲ Find and analyze complex conditions with advanced search options

	▲ Easily save a History viewer snapshot of the system, bookmarked and annotated at important
hotspots, and send to fellow developers, testers or technical support so they can instantly see
the entire system and continue debugging

	▲ Measure times of events with very high resolution

	▲ Handles cases when source code is missing or software is running in a virtual machine

	▲ See deeply into Linux and Android

	▲ Minimal processor overhead and no additional hardware needed

4

Back-in-time debugging
By automatically capturing actual program execution data TimeMachine enables the Debugger to run,
step and debug code backward to any problem area shown in History. It also powers other tools such as
the Profiler.

TimeMachine enables the MULTI Debugger to run, step and analyze your program
forward and backward in time to find the root cause of problems.

History provides unprecedented visibility into your system by displaying the last few seconds, minutes or days of
program execution across complex heterogenous multicore systems.

5

Prevent new problems
DoubleCheck™, Green Hills Software’s integrated static source code analyzer,
saves you time and money by identifying programming errors before running your
program. Because DoubleCheck is part of the Green Hills optimizing compilers,
there’s no setup hassle, and minimal overhead to use it. Simply set an option and
DoubleCheck automatically reviews source code each time it’s compiled. Since it’s
part of the compilers, DoubleCheck runs much faster than traditional static analysis
tools and that means that every developer can have it turned on all the time.

Moreover, DoubleCheck is more reliable than traditional code reviews and can find
bugs that may never show up during regular system testing.

Run-time Error Checking complements DoubleCheck by finding bugs that
cannot be identified by static analysis alone. Bugs due to memory corruption
are especially heinous and difficult to find, and can remain silent for a long time.
With run-time error checking, you’re alerted to the cause of the problem when
it happens. Run-time error checking identifies problems such as invalid memory
accesses through pointers, out-of-range value assignments, unhandled cases in
switch statements, and division by zero.

Clean code is less likely to contain errors and is easier to test, understand, and
modify. All of these factors contribute to fewer bugs and greater reliability. Green
Hills optimizing compilers enable enforcement of clean coding conventions defined
by industry standards including the MISRA 2012 and 2004 coding standards,
which includes more than one hundred rules for safe programming. You can also
choose to enforce a customized subset of these rules to meet your specific require-
ments.

GHS Standard Mode is a collection of compiler warnings and errors that enforces a stricter
coding standard than regular C and C++. It’s based on the experience Green Hills has gained
through the years to help increase the reliability of code. We use GHS Standard Mode internally
and find it provides good protection against common mistakes and bad coding stye, without caus-
ing too many false positives.

Advanced debugging
The MULTI Debugger is a powerful tool for examining, monitoring and changing source code,
while running on complex heterogenous multicore target processors and simulators. When
TimeMachine is used, it can even run backward in time. The Debugger is seamlessly integrated
with other tools within MULTI and can be invoked by clicking inside various MULTI tools such as
the History viewer.

	▲ Debug applications, kernels and device driver code on various operating systems or bare board
code

	▲ Debug virtualized operating system kernels and their applications

	▲ One debugger for run-mode and freeze-mode debugging and run-control of synchronous
(SMP) and asynchronous multicore (AMP)

	▲ Traverse the call stack, view cache, browse objects, and view memory and registers

	▲ Use the OSA Explorer to see deeply into the status of kernel objects, tasks, and resources

	▲ Debug task interactions at the source level

	▲ Find specific data points by using powerful execution and data breakpoints

	▲ Debug code running in virtual address spaces

With the MULTI Debugger, debugging multitask, multicore systems is as straightforward as with
single core systems.

When you debug a multitasking application on an OS like INTEGRITY® or Linux, MULTI can interact
with the multiple tasks in run-mode, in freeze-mode, or in both modes simultaneously. In run-
mode, the operating system kernel continues to run as you halt and examine individual tasks. In
freeze-mode, the entire target system stops when you examine tasks.

DoubleCheck lowers development costs by identifying problems
early in the “Develop” stage which saves time and resources.

6

Key among these features is synchronous run control, which halts all cores as a unit when any
core encounters a debugging condition. For instance, when a core hits a breakpoint the target list
clearly shows:
	▲ which core(s) have hit the breakpoint
	▲ which thread was executing on the core at the time
	▲ what the other cores in the system were doing

Ordinary tools often make downloading code to a multicore target a complex and tedious process.
MULTI can automatically handle downloading the INTEGRITY RTOS to these targets. For other
types of operating systems and applications a simple configuration file can be used to automate
the download and setup process.

Debug embedded Linux
MULTI for Linux brings advanced debugging to engineers developing embedded Linux
software. It dramatically improves their productivity and helps them bring a more reliable,
higher-performing product to market faster.

Traditional debugging tools for Linux offer only limited visibility and usefulness. GDB—and
front-ends such as Eclipse—are cumbersome to set up, difficult to use, slow in responsiveness,
and not always trustworthy when debugging embedded, optimized code. As a result, developers
often resort to the hit-and-miss effectiveness of printf and printk commands. Unfortunately—due
partly to the significant performance impact—these techniques introduce their own problems and
provide only a limited window into complex system execution.

With MULTI for Linux and Green Hills consulting services, you can now visualize and debug all
aspects of an embedded Linux system—including the Linux kernel, kernel threads, interrupt
services routines, user mode threads and processes—faster and more easily than ever before.

MULTI synchronous run control halts all cores in a multicore system simultaneously. This enables you to
debug one core without worrying that operations running on another core will affect shared memory.

7

Linux debugging capabilities
	▲ Comprehensive visibility into the Linux kernel, including shared memory regions, semaphores,
message queues, and kernel modules

	▲ Support for SMP multicore debugging

	▲ A single debugger for kernel code, drivers, user-space applications and virtualized code

	▲ Debug embedded Linux or virtualized Linux (on INTEGRITY Multivisor® virtualization) on the
target and native Linux on the desktop

	▲ See virtualized Linux and INTEGRITY events alongside each other in History viewer

	▲ Debug loadable kernel modules and device drivers

	▲ Easily debug Linux’s process startup code

	▲ Set any thread-specific breakpoints in kernel code

	▲ Debug shared objects in virtual address spaces

	▲ Handle breakpoints with minimum performance cost

	▲ Debug multi-threaded interactions across processes

An IDE that helps you manage your project
The MULTI IDE’s simplified project management frees you to spend more of your valuable time
developing your product. With its Builder, there’s no complicated build infrastructure to maintain,
and build configurations can be easily changed. The Builder automatically analyzes the dependen-
cies of your entire project and compiles and links as many files in parallel as possible, taking full
advantage of modern multicore systems.

Along with the Builder, the seamlessly-integrated Project Manager, Editor, Flash Program-
mer, and Instruction Set Simulator help you spend less time on build management and more
on your code.

The MULTI Project Manager simplifies how you build and update your application. Tabbed block
diagram and memory layout views provide an at-a-glance understanding of application structure. Here,

green signifies read/write memory and red signifies read-only memory.

8

Maximize performance
For applications that require the highest possible performance, the MULTI IDE offers both the
industry’s best embedded C/C++ compilers and the best performance analysis tools. To reach the
ultimate performance, you can also enlist a Green Hills Software performance-tuning expert for a
solution customized to your device.

Generate faster, smaller code
Compilers are the essential ingredient to
leverage processor performance and the
Green Hills C/C++ optimizing compilers are
the best in the industry. On the widely-
accepted EEMBC benchmarks for embed-
ded processors the Green Hills Compilers
consistently outperform competing compil-
ers to generate the fastest and smallest
code for 32- and 64-bit processors.

The Green Hills Compilers use hundreds of
the most advanced compiler optimizations
to significantly increase program execution
speed and decrease size.

While the Green Hills Compilers provide
an excellent baseline of default optimiza-
tions and settings, we understand that your
appli- cation is unique. You can fine-tune
Compiler output by enabling different com-
binations of optimizations and by configuring
optimiza-tions on a per-project, per-file, per-function, or even per-source-line basis. Our consult-
ing services team will help you use the highly configurable Green Hills Compilers to give you the
best performance results, on any project. On many programs, our consulting services team has
helped customers use the Green Hills Compilers to optimize programs to run 20% faster than with
competing compilers.

Pinpoint performance bottlenecks
The second key ingredient to maximizing your program’s performance is using the best perfor-
mance analysis tools. With the help of History and the Profiler tools, you can easily identify and
eliminate performance bottlenecks in your code. The result is a faster, more efficient application.

When it comes to maximizing performance, time is the most important dimension to consider. It’s
also the dimension that most profiling tools throw away. The innovative History visualization tool
provides a high-level, time-based view of every function executed in your program, making it easy
to identify patterns in program flow and easily spot where time is being spent.

Processor manufacturers publish certified EEMBC
benchmarks to showcase their processor’s perfor-
mance on real-world applications. These manufac-
turers have chosen to publish the highest scores

generated with Green Hills Compilers more than twice
as many times as any other compiler.

9

Profiler capabilities
The powerful Profiler provides additional insight into program behavior, using data gathered from
trace or instrumented code. It shows how much processor time is consumed by each task, func-
tion, source line, and assembly language instruction, making it easy to:

	▲ find performance problems

	▲ find coverage gaps and track test coverage of specific code

	▲ share profile data with other users

	▲ collect and merge profile data from several tests or profile recordings

History’s Graph pane, Activity Graph pane and Thumbnail pane provide unprecedented
views into where the program is spending its time. When pinpointing a performance problem dur-
ing your optimization work, History can save you days or weeks.

	▲ Displays the length and frequency of RTOS events making it obvious what operations take the
most time and where optimization efforts should be focused

	▲ See incorrect task priorities, excessive interrupt level processing, too many calls to the operat-
ing system, and unexpected task context switches

	▲ Intuitive display of core execution and relationships between tasks

The Profiler’s interface streamlines analyses by showing how often and for how long different tasks,
functions and instructions were run so you can pinpoint where to focus optimization and test efforts.

10

Benefit from our expert knowledge
To reach the highest possible performance, bring in the performance-tuning experts from Green
Hills Software. Our custom services will help you get the most out of our development tools and
compilers, assess your design, and even create a custom compiler optimization tailored to your
specific goals.

 Lower your production cost
In high-production environments, saving even pennies per unit can result in big overall savings.
The MULTI IDE can significantly reduce memory and processor costs to boost your bottom line.

Reduce your processor costs
You don’t always need a faster processor to meet increasing performance requirements. Our
superior C/C++ compiler optimizations are tuned to get the most out of the processor you use.
Additionally, our performance analysis tools such as the History viewer and Profiler give you a
bird’s-eye view of where your program is spending its time, helping you to focus your optimization
efforts. How much money would you save if you could use a lower-cost processor to meet the
same real-time requirements?

Improving your code’s performance pays off because it gives your design more CPU headroom to
add more features. It can even enable you to choose a lower cost processor that uses less power
and cooling.

Reduce your memory costs
Green Hills compiler optimizations reduce your memory costs by reducing the size of your
executable. Most programs see at least 10% improvement relative to the competing compilers.
Additionally, DoubleCheck and the MULTI Debugger’s Memory Allocations tool help you to
make more efficient use of your memory, futher reducing the amount of memory needed in you
embedded system.

With three decades of experience using and
creating tools to solve customer problems, our
skilled experts can help you to attain the best

possible performance and reliability.

The MULTI Debugger’s Memory Allocations tool lets you easily identify memory leaks at run-time.

11

Functional safety confidence
The MULTI C/C++ IDE and toolchain are certified to meet the highest safety
levels:

	▲ ISO 26262:2018 (Automotive); IEC 61508:2010 (Industrial);
EN 50128:2011 and EN 50657 (Railway) functional safety standards

	▲ Certificates received from both TÜV NORD and exida

	▲ Satisfies the highest achievable levels SIL 4 (Safety Integrity Level) and
ASIL D (Automotive Safety Integrity Level) and meets C/C++ run-time
libraries certification requirements

	▲ Supported on a broad set of target processors

The benefits are manifold:

	▲ Lower cost and shorter time to certification and production

	▲ Reduced certification maintenance after product release

	▲ Higher quality and confidence targeting code to highest ASIL/SIL levels

Green Hills training and consulting
Green Hills expert training and consulting services provide the most direct
route to understanding the full potential of the MULTI IDE, so you can reach
maximum productivity in the shortest time.

Managed implementation program
This program is designed to make development teams more efficient—and
productive—with the Green Hills Software product environment. Services
offered are completely customizable in content and duration and include:
	▲ expert training
	▲ environment setup
	▲ application design mentorship

Starting with the design phase, our experts will help you focus on the product
features that best match your needs. Along with customized training, the
managed implementation program offers proactive, ongoing mentorship to
ensure you know how to best use our environment as well as have regular
access to a Green Hills Software expert.

Customized training
Our training curriculum spans a wide range of material, from INTEGRITY pro-
gramming to advanced History-guided debugging. Courses are taught by
experts with hands-on experience developing with Green Hills tools. Classes
can be taught at your facility and on your schedule, providing maximum value
with minimal interruption.

Open enrollment training	
Teams with smaller training budgets can attend our popular open-enrollment
courses at scheduled locations around the world. These classes are also
perfect for new hires who have just joined a team that has already completed
a Green Hills Software training class.

MULTI ecosystem

Contact Green Hills Software for the latest support for new
processors and operating systems.

Target processors
	▲ ARM (AArch32 & AArch64)	 s	 Power Architecture	
	▲ TriCore 	 s	 RH850/ V850
	▲ Intel (x86 & x64)	 s	 RISC-V
	▲ MIPS

Development hosts
	▲ Windows	 s	 Linux

Operating systems
	▲ INTEGRITY	 s	 Linux	 s	 µ-velOSity™	
	▲ AUTOSAR	 s	 VxWorks	 s	 FreeRTOS

JTAG & Trace Probes
	▲ Green Hills Probe	 s	 Selected third-party probes
	▲ Green Hills SuperTrace Probe

Languages
	▲ C	 s	 C++	 s	 EC++	
	▲ Ada (with AdaMULTI)	 s	 GNU C/C++ extensions

Third-party integrations
Compilers
	▲ GCC & those that generate DWARF or Stabs debugging info

Design & test tools
	▲ Rhapsody	 s	 Simulink/MATLAB®

	▲ SCADE	 s	 LDRA
	▲ VectorCAST	 s	 Python

Corporate Headquarters
30 West Sola Street s Santa Barbara, CA 93101

ph: 805 965 6044 s fax: 805 965 6343 s email: info@ghs.com s www.ghs.com

European Headquarters
Fleming Business Centre s Leigh Road s Eastleigh s Hampshire S050 9PD s United Kingdom

ph: +44 (0)2380 649660 s fax: +44 (0)2380 649661 s email: info-emea@ghs.com

Safety & Security Critical Products
34125 US Hwy 19 North s Suite 100 s Palm Harbor, FL 34684

ph: 727 781 4909 s fax: 727 781 3915 s email: info-sscp@ghs.com

Green Hills, the Green Hills logo, INTEGRITY, MULTI, TimeMachine, DoubleCheck, Multivisor, µ-velOSity, SuperTrace Probe, and History are trademarks or registered trademarks of Green
Hills Software in the US and/or internationally. All other trademarks (registered or otherwise) are the property of their respective companies. © 2022 Green Hills Software. v1022

